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We study the spectral gap of the Erdős–Rényi random graph through the connectivity

threshold. In particular, we show that for any fixed δ > 0 if

p ≥ (1/2+ δ) log n

n
,

then the normalized graph Laplacian of an Erdős–Rényi graph has all of its nonzero

eigenvalues tightly concentrated around 1. This is a strong expander property. We

estimate both the decay rate of the spectral gap to 1 and the failure probability, up

to a constant factor. We also show that the 1/2 in the above is optimal, and that if

p = c log n
n for c < 1/2, then there are eigenvalues of the Laplacian restricted to the

giant component that are separated from 1. We then describe several applications of

our spectral gap results to stochastic topology and geometric group theory. These all

depend on Garland’s method [24], a kind of spectral geometry for simplicial complexes.

The following can all be considered to be higher-dimensional expander properties.

First, we exhibit a sharp threshold for the fundamental group of the Bernoulli random

2-complex to have Kazhdan’s property (T). We also obtain slightly more information

and can describe the large-scale structure of the group just before the (T) threshold. In

this regime, the random fundamental group is with high probability the free product

of a (T) group with a free group, where the free group has one generator for every
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2 C. Hoffman et al.

isolated edge. The (T) group plays a role analogous to that of a “giant component”

in percolation theory. Next we give a new, short, self-contained proof of the Linial–

Meshulam–Wallach theorem [35, 39], identifying the cohomology-vanishing threshold

of Bernoulli random d-complexes. Since we use spectral techniques, it only holds for

Q or R coefficients rather than finite field coefficients, as in [35] and [39]. However, it

is sharp from a probabilistic point of view, providing for example, hitting time type

results and limiting Poisson distributions inside the critical window. It is also a new

method of proof, circumventing the combinatorial complications of cocycle counting.

Similarly, results in an earlier preprint version of this article were already applied in [33]

to obtain sharp cohomology-vanishing thresholds in every dimension for the random

flag complex model.

1 Introduction

Studying the spectral properties of random matrices has played a central role in

probability theory ever since Wigner’s paper establishing the semicircular law for

symmetric matrices with independent entries of equal variance [44]. The theory of these

matrices is rich and welldeveloped, and its techniques and theorems provide great

insight into the adjacency matrices of random graphs.

In this paper we study the normalized Laplacian matrix of a Bernoulli (also

Erdős–Rényi) random graph G(n, p), which has n vertices and whose every edge is

included independently with probability p = p(n). For a connected graph G, the

normalized Laplacian has smallest eigenvalue λ1 = 0, and the remainder of its

eigenvalues {λi}ni=2 lie in the interval 0 < λi ≤ 2. The spectral gap, λ2, is the principal

quantity of interest in many applications, and it has received much attention in the

literature [8–10, 12].

Our focus is on typical behavior of random graphs for large values of n. So,

we will use the terminology with high probability (w.h.p.) as a qualifier for a statement

holds with probability tending to 1 as n tends to infinity. We will also use the expression

with overwhelming probability, meaning the statement holds with failure probability

smaller than O(n−C) for all C > 0.

We will make use of the Landau notations O, o, ω, �, � in the asymptotic sense,

so that f = O(g) means f /g is eventually bounded above as n → ∞ and f = o(g) means

f /g tends to 0 as n → ∞. Also, f = ω(g) means g = o(f ) and f = �(g) means g = O(f ).

Finally, we will use f = �(g) to mean f = O(g) and f = �(g).
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Spectral Gaps of Random Graphs 3

We will also make use of the notion of thresholds. A function f = f (n) is said to

be a threshold for a property P if p = ω(f ) implies G ∈ P w.h.p. and p = o(f ) implies

G �∈ P w.h.p. Such a threshold is only defined up to n–independent scalar multiples. If

there is a function g = o(f ) so that p ≥ f + g implies G ∈ P w.h.p. and p ≤ f − g implies

G �∈ P w.h.p. the threshold is sharp. If no such g exists, the threshold is coarse.

A fundamental result of random graph theory is that every nontrivial monotone

property has a threshold [21], which need not be sharp. For example, the appearance

of triangles in G(n, p) has the threshold 1/n, which is coarse. On the other hand, the

Erdős–Rényi theorem shows that log n/n is the sharp threshold for connectivity of the

graph. Similarily, we will need that 1
2 log n/n is the sharp threshold for the graph to

consist only of one giant component G̃ and isolated vertices, which is an easy extension

of the Erdős–Rényi theorem. We will use G̃ to denote the largest connected component

of G(n, p), which is well–defined w.h.p. for p = ω(1/n) (see [31] for a detailed discussion

or Lemma 5.8).

For the Erdős–Rényi graph, as we shall show, the eigenvalues {λi}ni=2 tend to

cluster around 1, and hence we define λ(G) = maxi�=1 |1 − λi|. The quantity 1 − λ(G) is

sometimes referred to as the absolute gap. The methods in the previous papers are

successful in establishing the correct order for λ(G) of C(np)−1/2 when the density

of edges is sufficiently large, but they do not extend to p very near the connectivity

threshold log n/n.

Our main result on spectral gaps are contained in the following two theorems.

Theorem 1.1. Fix δ > 0 and let p ≥ (1
2 +δ) log n/n. Let d = p(n−1) denote the expected

degree of a vertex. For every fixed ε > 0, there is a constant C = C(δ, ε), so that

λ(G̃) <
C√
d

with probability at least 1− Cn exp(−(2− ε)d)− C exp(−d1/4 log n).

This result improves on a number of previous results. These earlier results are

discussed in more detail in Section 2. In brief, the state of the art is due to Coja–Oghlan

[12] who obtains gap 1 − O(d−1/2) for p ≥ C log n/n, where C > 0 is a sufficiently large

constant. We are able to extend this to C = 1, and appropriately modifying the statement

for the giant component, we extend this to C = 1
2 .

We note that Theorem 1.1 is vacuous for p ≤ 1
2 log n/n. Indeed, the next result

shows that for smaller values of p, the gap is no longer 1− o(1).
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4 C. Hoffman et al.

Theorem 1.2. For p satisfying p = ω(
√

log n/n) and p ≤ 1
2 log n/n,

λ(G̃) ≥ 1
2 ,

w.h.p.

For p = O(
√

log n/n), Fountoulakis and Reed [19] show that the mixing time

is large, and hence provide a lower bound for λ(G̃) in this regime. So G(n, p) has λ(G̃)

bounded away from 0, but at 1
2 log n/n there is a phase transition, and at this point

λ(G̃) = o(1). We in fact prove a slightly stronger result than Theorem 1.2 in Section 5

(c.f. Lemma 4.2).

We also consider an Erdős–Rényi process version (see Section 6 for definitions)

of the spectral gap theorem. In particular, we show that if random edges are added one

at a time, at the moment of connectivity the random graph already has spectral gap

1− o(1). More precisely, we have the following.

Theorem 1.3. Let τc be the connection time for the Erdős–Rényi graph process G(n, m).

Then there is a constant C so that w.h.p.

λ(G(n, τc)) ≤ C/
√

log n.

This theorem follows immediately from Theorem 6.1 in the 2D case: that theorem

shows that the largest component of the Erdős–Rényi graph process has gap λ(G̃) ≤
C/
√

log n for all time after (1
4 + δ)n log n edges have been added, w.h.p. Hence, at the

connection time τc, which occurs when about (1
2 )n log n edges have been added, λ(G) =

λ(G̃) ≤ C/
√

log n.

1.1 Applications to stochastic topology

As we will see, Theorem 1.1 is useful in the study of random topological spaces and

random groups. We now provide several examples where this theorem yields sharp

results. All of these new results depend on the combination of the spectral gap theorem

with “Garland’s method” and its refinements by Ballman and Światkowski [3], and by

żuk [45, 46].

• Kazhdan’s property (T). Linial and Meshulam [35] introduce an analogous measure

Y2(n, p) to the binomial random graph for random 2D simplicial complexes.

This is the probability distribution on all simplicial complexes with vertex set
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Spectral Gaps of Random Graphs 5

[n] = {1, 2, . . . , n}, with complete 1-skeleton (i.e., with all possible
(n

2

)
edges), and such

that each of the
(n

3

)
possible 2D faces are included independently with probability p. We

use the notation Y ∼ Y2(n, p) to indicate a complex drawn from this distribution. We

will call an edge isolated if no triangle contains it.

We prove here a structure theorem for the random fundamental group, for a

certain range of p.

Theorem 1.4. Suppose δ > 0 is fixed,

p ≥ (1+ δ) log n

n
,

and Y ∼ Y2(n, p). Then w.h.p. π1(Y) is isomorphic to the free product of a (T) group

G, and a free group F, where the free group F has one generator for every isolated

edge in Y.

As a corollary, we also show that the threshold for π1(Y) to have property (T)

agrees precisely with the homology-vanishing threshold found by Linial and Meshulam

[35]. For the proof, along with further details and explanation, see Section 3.2.

It might be that π1(Y) is a free product of a (T) group and a free group for smaller

p. The most interesting conjecture about the structure of π1(Y) might be the birth of a

giant (T) free factor at p = c/n for some constant c ≈ 2.7538. This is the same point as

the homological phase transition studied by Linial and Peled [36].

• Random d-dimensional simplicial complexes. Meshulam and Wallach further gener-

alize the 2D model to random d-dimensional complexes Yd(n, p) [39]. Their main result is

that p = d log n/n is a sharp threshold for vanishing of cohomology Hd−1(Y, k) where k

is a finite field or a field of characteristic 0. The proof requires delicate cocycle counting

arguments.

The new spectral gap results give a new proof of the Meshulam–Wallach

theorem, in the case that k is a field of characteristic 0. The Meshulam–Wallach theorem

is stronger topologically, since homology vanishing over a finite field implies vanishing

over Q. However, our new proof is very short (given the spectral gap theorem), and

the result is slightly sharper probabilistically. For example, we obtain hitting time

results in an accompanying stochastic growth process (see Corollaries 3.3 and 3.9 for

representative examples of “hitting time results”), and also we recover a simple proof of

the Poisson distribution of Betti numbers in the critical window (Corollary 3.4).
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6 C. Hoffman et al.

Gundert and Wagner show that the Laplacian on (d − 1)-forms in a random

d-complex has a large spectral gap for p ≥ Cd log n/n for some sufficiently large Cd [28].

Combining their argument with the results in this paper would yield a hitting time

result, and in particular this shows that the gap for these higher Laplacians is already

large for p ≥ d log n/n.

Parzanchevski, Rosenthal, and Tessler [41] combine Gundert and Wagner’s

argument with earlier work of Pach [40] to show that for p ≥ Cd log n/n, w.h.p. Y has the

“geometric overlap” property (a sequence of d-dimensional simplicial complexes Sn with

Fn d-dimensional faces has the geometric overlap property if there exists a constant

λ > 0 so that for every geometric map: Sn → Rd (i.e., affine linear on each face), there

exists a point p ∈ Rd that lies in the image of at least λFn d-faces. See, for example,

recent work by Gromov and collaborators in [26], [27], and [20]). It also seems possible

to use the new spectral gap results to sharpen this result, and show that in the process

version of the random complex, random d-complexes already have the geometric overlap

property as soon as they are pure d-dimensional.

As far as we can tell, these suggested sharpenings of the main theorems in [28]

and [14] are not written down anywhere, and we do not further elaborate on them in this

note. It seems that these sharper results only depend on substituting our Theorem 1.1

for earlier results on spectral gap G(n, p).

• Triangular random groups. Antoniuk et al. [1] study the phase transitions that occur

in the triangular model of random groups. Similarly, by using our spectral gap results,

their results can be strengthened, for example, to show a hitting time result.

• Random flag complexes. Let X(n, p) denote the random clique complex, that is, the

maximal simplicial complex, with respect to inclusion of faces, whose 1–skeleton is

given by an Erdős–Rényi graph G(n, p).

Combining the spectral gap theorem from an earlier version of this paper with

Garland’s method, similar cohomology vanishing results were recently obtained for

X(n, p) by the 2nd author in [33]. Combining with several earlier results [32], as a

corollary this shows that for every d ≥ 3, there is a wide range of p for which X(n, p)

is rationally homotopy equivalent to a bouquet of d-dimensional spheres (a simplicial

complex is rationally homotopy equivalent to a bouquet of d spheres if it is simply

connected and all of its nontrivial reduced, rational, homology is in degree d).

• Random right-angled Coxeter groups. Group cohomology of random right-angled

Coxeter groups were studied in [15]. Applying the same techniques as in the random

flag complex paper [33], it is shown that for a certain measure and range of parameter,

random right-angled Coxeter groups are rational duality groups w.h.p. This is actually
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Spectral Gaps of Random Graphs 7

a special case of a more general statement that shows that the same holds for random

graph products of finite groups.

1.2 Organization

Section 2 contains the background about the spectrum of the normalized Laplacian

of Erdős–Rényi random graphs. Section 3 does the same for our applications of our

spectral results to random topology. In Section 4 we show how to transfer adjacency

matrix estimates to the normalized Laplacian under some assumptions on the structure

of the graph. In Section 5 we show that an Erdős–Rényi graph satisfies these structural

conditions w.h.p. In Section 6 we show that the Linial–Meshulam process has large gap

in a local spectral sense. In Section 7 we show how to apply the Ballman–Światkowski

criterion to prove the structure theorem for rational cohomology, and in Section 8 we

show how to apply żuk’s criterion to prove the structure theorem for the fundamental

group. In Section 9 we apply the Kahn-Szemerérdi machinery to show that the adjacency

matrix of the Erdős–Rényi graph has a gap of the correct order for any p with

p = �(log n/n). Finally, we include one appendix that proves the precise versions of

the tail bounds for binomial variables that we use.

2 Background: Spectra of Random Graphs

There are multiple common notions of spectra of a graph. The most elementary

definition is given by the eigenvalues of the adjacency matrix A. The subjects of our

main theorems are the eigenvalues of the normalized Laplacian L (see (1) for a precise

definition). When the graph is regular, these two notions of spectra are just shifted

rescalings of one another.

Appropriately, when the graph is nearly regular, as is the case for G(n, p) with

p = ω(log n/n), these two spectra behave in nearly the same way. Coarse statements

about the spectral gap of G(n, p) in this regime can largely be considered a statement

about either spectra, and indeed, the primary method for estimating the gap of L in the

setting of Erdős–Rényi graphs is by comparison with A.

We will now give a precise definition of the normalized Laplacian. A good

general introduction to the properties of the normalized Laplacian is available in [10].

Let π+ be the projection map onto the vertices with positive degree, let T be the diagonal

matrix of degrees, and let A be the adjacency matrix. The normalized Laplacian is

defined as

L = π+ − T−1/2AT−1/2, (1)
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8 C. Hoffman et al.

where T−1/2 is taken to be 0 in coordinates where the degree is 0. Note that some authors

use an alternate definition of normalized Laplacian, with π+ replaced by Id. We let

0 = λ1 ≤ λ2 ≤ . . . ≤ λn ≤ 2 be the eigenvalues of L.

The principal nontrivial property we will employ about L is that the dimension

of the kernel is equal to the number of components of G. An immediate consequence

is that for a graph with multiple nontrivial components, λ2 = 0. In particular, when

np− log n →−∞ the normalized Laplacian has no spectral gap w.h.p. That said, it still

makes sense to consider the spectral gap of L restricted to the giant component.

Techniques for estimating eigenvalues

As A has independent and identically distributed (i.i.d.) entries above the diagonal,

many off-the-shelf techniques can be applied to it directly. In particular, the original

trace method bound of Füredi and Komlós [23] can be extended to show that when

p = ω(log6 n/n), the 2nd largest eigenvalue of the adjacency matrix of an Erdős–Rényi

graph is of smaller order than the largest eigenvalue. Improvements and corrections

to this argument brought the bound to p = ω(log4 n/n), [43] and later to as low as

p � log2 n/n [8]. Newer methods have been pursued in [5, 6, 34].

The alternative method of Kahn and Szemerédi [22], first developed for bounding

the spectral gap of d-regular graphs, has been adapted quite successfully for estimating

the spectral gap in the p = �(log n/n) regime by Feige and Ofek [18]. In particular, they

show that there are constants c > 0 and K > 0 so that for p > c log n/n, all but the first

eigenvalue are at most K
√

np.

One contribution of this paper is a sharpening of this estimate (see

Proposition 5.2). Indeed, we show that for any c > 0, there is a K > 0 so that for

p > c log n/n, all but the first eigenvalue are at most K
√

np. Conversely, it is easily

checked that for p = o(log n/n), there are many eigenvalues greater in magnitude than
√

np, coming from the existence of high-degree stars in the graph. Thus, in a sense,

we sharpen the Kahn–Szemerédi analysis of the full adjacency matrix of G(n, p) to its

natural endpoint.

However, our main contribution in this paper is a technique for exactly

characterizing when and why the extremal eigenvalues of the normalized Laplacian

stop tracking the extremal eigenvalues of the adjacency matrix. Throughout the

p = �(log n/n), the extremal eigenvalues of the adjacency matrix do not undergo a

phase transition (see Proposition 5.2).

In contrast, for the Laplacian, there is a transition at p = log n/n, before

which point the graph has isolated vertices. Each isolated vertex contributes a
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Spectral Gaps of Random Graphs 9

0-eigenvalue to the spectra of the Laplacian, but as a consequence of Theorem 1.1,

the remaining eigenvalues will be 1+O(1/
√

np) as anticipated. There is a 2nd transition

at p = 1
2 log n/n below which there are quadruplets of vertices in the giant component

on which the induced graph is a path. These quadruplets each contribute an eigenvalue

near to 1
2 , but the remainder of the spectra will again be 1 + O(1/

√
np). Continuing in

this way, we conjecture that there are a whole family of transitions at 1
k log n/n for any

natural number k, where the spectral gap of the giant component is asymptotically the

spectral gap of a path on k vertices.

2.1 Comparing spectra and the gap theorem proof approach

While it is relatively straightforward to transfer estimates on the gap of A to the gap

of L in the p = ω(log n/n) regime, Coja-Oghlan [12] sharpens this analysis to show that

there are c > 0 and K > 0 so that for p ≥ c log n/n, all but the smallest eigenvalue of L

are at most K/
√

np in modulus w.h.p.

There are some similarities between our approach and the method of

Coja-Oghlan [12]. His analysis rests on applying the Kahn–Szemerédi machinery to

the adjacency matrix of a sufficiently regular subgraph of G(n, p) and then arguing

this core of the graph determines the eigenvalues of the Laplacian of the whole

graph. We make a finer analysis of the structure of G(n, p) in the p = �(log n/n)

regime in order to show that in fact the spectra of the adjacency matrix and the

spectra of the normalized Laplacian only fail to be comparable when small sparse

subgraphs appear.

To bound maxi>1

∣
∣1− λi

∣
∣ it suffices instead to bound the spectrum of what is

essentially I − L. Given the graph G with vertices {1, 2, . . . , n} we define the matrix

Mu,v =

⎧
⎪⎨

⎪⎩

1√
deg(u)

√
deg(v)

if u is adjacent to v,

0 otherwise.

Thus, if all degrees are positive we have

M = T−1/2AT−1/2,

and it is easily checked that for any vertex set W of a connected component of V, T1/21W

is an eigenvector with eigenvalue one.
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10 C. Hoffman et al.

Set S = {x|xt1 = 0}. The standard Kahn–Szemerérdi machinery applied to the

adjacency matrix shows that

|xtAy| ≤ C
√

d‖x‖‖y‖,

where d = np, for all x ∈ S and all y ∈ Rn, provided p = �(log n/n).

When p > (1 + ε) log n/n, the comparison is relatively straightforward, by

virtue of the fact that w.h.p. all the degrees in the graph are larger than d/M for

some sufficiently large M. In particular, this means that ‖T−1/2‖ ≤ √
M/

√
d. One must

additionally show that T−1/21 is nearly parallel to 1, that is, T−1/2 nearly maps the space

S to itself. In sum, these two facts show that for x ∈ S, T−1/2x is still nearly in S and has

norm ‖T−1/2x‖ ≤ √M‖x‖/√d. Thus,

|xtMx| = |(T−1/2x)A(T−1/2x)| ≈ C
√

d‖T−1/2x‖2 ≤ CM‖x‖2/
√

d,

giving the desired result.

Likewise, when p >
log n+(log n)1/2+δ log log n

n , the minimal degree of the graph is still

at least d1/2+δ w.h.p. In this case, the T−1/2 still nearly maps S to S, but now ‖T−1/2x‖ ≤
d−1/4−δ/2. This allows one to show that

max
i>1

∣
∣1− λi

∣
∣ < d−δ,

which is essentially the approach taken by an earlier version of this paper.

To get theorems that hold all the way down to below p = log n/n, where the

minimum degree drops to 0 an additional argument is needed. This is because it is

no longer the case that ‖T−1/2‖ = O(1/
√

d). The key structure theorem that allows the

comparison to go through is an analysis of the graph structure surrounding low-degree

vertices. Precisely, we show that near the connectivity threshold, there are no edges

between low-degree vertices, and low-degree vertices do not even have shared neighbors

(see Proposition 5.3). Thus, they are only connected through the large, high-degree core.

This is enough to ensure that the desired spectral properties persist all the way down

to around p ∼ 1/2 log n/n.

On the other hand, below p ∼ 1/2 log n/n, low-degree vertices in the giant

component begin to connect w.h.p. Indeed, it is possible to show that there are even two

degree 2 vertices that connect to each other and the high-degree core. This is enough to

ensure that λ2 of the giant component is at most a little above 1
2 and λn is at least 3

2 .
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Spectral Gaps of Random Graphs 11

2.2 Further discussion

For p satisfying np − log n →∞, we have provided a bound on λ(G) that is sharp up to

a constant multiplicative factor. For the adjacency matrix in many regimes, much more

is known about the behavior of the second largest eigenvalue.

Recall that a Wigner matrix is a symmetric matrix with independent, centered,

variance 1 entries above the diagonal. From Wigner’s celebrated semicircle law, it

can be inferred that the largest eigenvalue of such a matrix is around 2
√

n. In fact

a much stronger result is known for a large class of Wigner matrices, for which it

is seen that

n1/6(λ1 − 2
√

n) ⇒ X,

where X follows the Gaussian orthogonal ensemble (GOE) Tracy–Widom law. When the

entry distributions are Bernoulli(p)—that is, when this is the adjacency matrix of an

Erdős–Rényi graph—it was recently shown by Knowles, Erdős, Yau, and Yin [17] that

for p � n−1/3, the analogous results hold for the second largest eigenvalue. One of the

limits of comparing the spectra of the adjacency matrix and the Laplacian matrix is

that such a fine statement about the spectra does not easily transfer. It is appealing

to speculate that at p ∼ log n/n, the smallest nonzero eigenvalue of the normalized

Laplacian is exactly 1− (2− o(1))
√

np, consistent with what would be predicted by the

semicircle law of the adjacency matrix.

The spectral gap of the normalized Laplacian is strongly related to other

probabilistic quantities of the graph, in particular to properties of simple random

walk (see [10] for more details) and to the Cheeger constant. Direct analysis of these

quantities is also possible, which then implicitly give bounds on the spectral gap.

Benjamini et al. [7] take a combinatorial approach and study the Cheeger constant (also

called isoperimetric constant, or conductance) throughout the evolution of the random

graph process. Likewise Fountoulakis and Reed study the mixing time of simple random

walk on the giant component through the conductance [19] in the strictly supercritical

regime 1+ε
n < p <

√
log n
n . Ding et al. [16] studied probabilistic aspects of the graph

including the mixing time of simple random walk on the giant component as the graph

emerges from the critical window. All these works show that the giant component can

be partitioned into a well-connected expanding core together with small (logarithmic

size) graphs attached to the core. We also employ a version of this decomposition to

analyze the spectral properties of the graph.
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12 C. Hoffman et al.

3 Random Topology

In [35], Linial and Meshulam introduce an analogous measure Y2(n, p) to the binomial

random graph for random 2D simplicial complexes. This is a probability distribution

over all simplicial complexes with vertex set [n] = {1, 2, . . . , n} with complete 1-skeleton

(i.e., with all possible
(n

2

)
edges). Each of the

(n
3

)
possible 2D faces are included

independently with probability p. We use the notation Y ∼ Y2(n, p) to indicate a complex

drawn from this distribution. Meshulam and Wallach [39] extend this definition to a

d-dimensional complex Yd(n, p), formed by taking the complete (d − 1)-skeleton of the

n-vertex simplex, and including d-dimensional faces independently with probability p.

The distributions can be made into stochastic growth processes in a natural

way. Let Y2(n, m) be the random 2-complex that has the uniform distribution over all

simplicial complexes with n vertices,
(n

2

)
edges, and exactly m 2D faces. In the random

complex process {Y2(n, m)}, faces are added one at a time, uniformly randomly from all

faces that have not already been chosen. In the same way, we can define the process

{Yd(n, m)} by including d-faces one at a time.

We also define a time-changed version of this process Yd
t (n), more suitable to

working with the binomial complex. Instead of including the faces one at a time, create

independent Exp(1) clocks for every d-face. When one of the clocks rings, include the

corresponding face. If we let p(t) = 1− e−t, then Yd
t (n) has the distribution Yd(n, p(t)).

3.1 Cohomology vanishing

The foundational work on the Linial–Meshulam complexes is a cohomological analogue

of the Erdős–Rényi connectivity theorem.

Linial–Meshulam–Wallach theorem. Let k be any finite field, d ≥ 2 fixed, f (n) →∞ be

any slowly growing function, and Y ∼ Yd(n, p). If

p ≥ d log n+ f (n)

n
,

then w.h.p. Hd−1(Y, k) = 0, and if

p ≤ d log n− f (n)

n
,

then w.h.p. Hd−1(Y, k) �= 0.

For the case that d = 2 and k = Z2, this is due to [35], while for the version

stated, this is due to [39]. By the universal coefficient theorem, these results imply
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Spectral Gaps of Random Graphs 13

the corresponding theorem for the cohomology with Q coefficients. For Z coefficients,

it is shown by the authors in [30] that for p ≥ 80d log n/n, Hd−1(Y,Z) = 0 by other

techniques. For d = 2, work of [37] establishes 2 log n/n as the sharp threshold for

vanishing Z homology.

The threshold p ∼ d log n/n is also the threshold for the existence of isolated

(d−1)-faces in the complex, that is, faces that are not included in any d-face. Indeed, the

presence of isolated faces is precisely the reason that the cohomology is nonzero below

this threshold. In fact, a finer statement can be made about the number of isolated

(d− 1)-faces.

Lemma 3.1. Let I denote the number of isolated (d− 1) faces in Yd(n, p). Suppose that

for fixed c,

p = d log n+ c + o(1)

n
.

Then I converges in law to Poisson(e−c/d! ).

The proof of this lemma is standard and can be proved in the same man-

ner as the Poisson convergence of the number of isolated vertices in G(n, p). See

Proposition 4.13 of [42].

Using spectral techniques, we give a new proof of the Linial–Meshulam–Wallach

theorem, although only with Q or R coefficients. However, for Q coefficients, we

also sharpen the theorem by proving a process version. More strikingly, this theorem

shows that long before the last isolated (d − 1)-faces disappear, the only obstruction

to vanishing cohomology are those isolated (d − 1)-faces. Its proof follows almost

immediately from spectral arguments and Garland’s method (see Section 7).

Theorem 3.2. Consider the random complex process {Yd
t (n)}. Let It denote the number

of isolated (d − 1)-faces in the complex at time t. Fix any δ > 0 and define t0 so

p(t0) = (d− 1+ δ) log n/n. Then w.h.p. for all time t ≥ t0,

Hd−1(Yd
t (n),Q) ∼= QIt .

As w.h.p. It0
> 0 we immediately get the following hitting time corollary.

Corollary 3.3. Consider the random complex process {Yd(n, m)}. Let

M1 = min{m | Yd(n, m) has no isolated (d− 1)− dimensional faces},
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14 C. Hoffman et al.

and let

M2 = min{m | Hd−1(Yd(n, m),Q) = 0}.

Then w.h.p. M1 = M2.

Further, it is standard to show at this point that the Betti numbers are

asymptotically Poisson.

Corollary 3.4. Suppose that for fixed c,

p = d log n+ c + o(1)

n
.

Then bd−1(Yd(n, p)) converges in law to Poisson(e−c/d! ).

Note that this follows immediately from Lemma 3.1 and Theorem 3.2.

3.2 The fundamental group

For the 2D complex, a fair bit is known about the fundamental group π1(Y). Babson and

the 1st two authors find the threshold for the fundamental group to be trivial [2].

Theorem 3.5 (Babson–Hoffman–Kahle). If p = n−α, where α < 1/2 then w.h.p. π1(Y) is

a nontrivial word hyperbolic group. If p ≥ n−1/2 log(n) then π1(Y) is trivial.

Cohen et al. [11] show that if p = o(1/n), then w.h.p. π1(Y) is free. Finally, Costa

and Farber describe the cohomological dimension cd π1(Y) in various regimes [13, 41].

Theorem 3.6 (Costa–Farber). Let Y ∼ Y2(n, p), and set p = n−α.

(1) If α > 1 then w.h.p. cd π1(Y) = 1;

(2) if 1 > α > 3/5 then w.h.p. cd π1(Y) = 2; and

(3) if 3/5 > α > 1/2 then w.h.p. cd π1(Y) = ∞.

For the 2D complex, we combine the new spectral results with Garland’s method

to show a threshold theorem for π1(Y) to have property (T). A group G is said to have

property (T) if every unitary action of G on a Hilbert space that has almost invariant

vectors also has a nonzero invariant vector. The 1st explicit examples of expanders,

due to Margulis, were constructed using Cayley graphs on quotients of (T) groups such
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Spectral Gaps of Random Graphs 15

as SL(3,Z) [38]. Conversely, expansion properties of some graphs associated with the

generating set of a group can imply property (T) (see [46]).

Property (T) has found use in many different areas of mathematics. For

example, groups with property (T) lead to good mixing properties in ergodic

theory—a process that mixes slowly must leave some subsets almost invariant.

In particular, if a group � has property (T), then every ergodic � system is also

strongly ergodic [25]. See the monograph [4] for a comprehensive overview of

property (T).

We recall for convenience the statement of Theorem 1.4.

Theorem. Suppose δ > 0 is fixed,

p ≥ (1+ δ) log n

n
,

and Y ∼ Y2(n, p). Then w.h.p. π1(Y) is isomorphic to the free product of a (T) group G,

and a free group F, where the free group F has one generator for every isolated

edge in Y.

Theorem 1.4 might be viewed as a group-theoretic analogue of the fact that for

p ≥ (1/2 + δ) log n/n, the random graph G ∼ G(n, p) is w.h.p. a giant component, which

is an expander, and isolated vertices.

We anticipate that the true threshold for π1(Y) being the free product of a

free group and a nontrivial (T) group is much lower, and that it occurs in the range

p = �(1/n). The significance of the threshold log n/n is that this is the threshold at

which the free group is generated by isolated edges.

For example, if p = δ log n/n with 0 < δ < 1 fixed, then w.h.p. there exists

a triangle abc in Y2(n, p) such that edges ab and ac are not contained in any other

triangle. In other words, the edge bc is a connected component in the link of vertex a.

In this case, the edge ab and triangle abc can be collapsed by an elementary collapse.

This is a homotopy equivalence—after the collapse, the edge ac is a generator of a free Z

factor in π(Y), but before the collapse there is no isolated edge generating this element

of the group.

On the other hand, this is also the point our argument in Section 8 ceases to

apply. To apply żuk’s criterion in Section 8, we first delete all isolated edges and the

resulting complex has connected vertex links with good expansion properties. In the

case above, the vertex link a is not connected, even after such deletions.
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16 C. Hoffman et al.

We have the following corollary of Theorem 1.4, which shows that the thresh-

old for property (T) is the same as the Linial–Meshulam theorem for vanishing of

Z/2-homology.

Corollary 3.7. Let ω →∞ as n →∞, and Y ∼ Y2(n, p). If

p ≥ 2 log n+ ω

n

then P[π1(Y) has property (T)] → 1.

We also describe a process version of this structure theorem that holds below

the connectivity threshold.

Theorem 3.8. Consider the random complex process {Yd
t (n)}. Let F̃t be a free group

with the number of generators equal to the number of isolated edges in the complex

Yd
t (n). Fix any δ > 0 and define t0 so p(t0) = (1+ δ) log n/n. Then w.h.p. for all t ≥ t0,

π1(Y2(n, p(t))) ∼= Gt ∗ F̃t

where Gt has property (T).

Note that Theorem 1.4 follows immediately from this. As the number of isolated

edges at time t0 is positive w.h.p, we get the following hitting time corollary.

Corollary 3.9. Consider the random complex process {Y2(n, m)}. Let

M1 = min{m | Y2(n, m) has no isolated edges},

and let

M2 = min{m | π1(Y2(n, m)) is (T)}.

Then w.h.p. M1 = M2.

Remark 3.10. We can additionally give an explicit Kazhdan pair for the (T) group.

Setting S to be the canonical generating set based at vertex 1, that is, all loops cycles of

the form 1 → x → y → 1 for distinct vertices x and y, then (S,
√

2(1−o(1))) is a Kazhdan

pair (see Remark 5.5.3 of [4]).
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Spectral Gaps of Random Graphs 17

4 Spectral Estimates

In this section we give some conditions on an arbitrary graph G on n vertices that

facilitate a large spectral gap. Fix positive constants C1, C2, C3 and M. In this section d

can be any function of n with d = d(n) ≥ 1, and this is always satisfied by d = (n− 1)p,

the convention taken in other sections.

Recall that T is the diagonal matrix of degrees. Let W denote the set of vertices

x for which deg x > 0 and I be the number of isolated vertices in the graph. For any

set of vertices S, let 1S denote the vector that is one in every coordinate corresponding

to S and 0 elsewhere. Let 0 = λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of the normalized

Laplacian L[G], so that λ1 = λ2 = · · · = λI+1 = 0. We also define a set of vertices of small

degree. Let

ℵM = {v ∈ V : deg(v) ≤ d/M}. (2)

We now define four conditions that will ensure a spectral gap.

(1) Bounded degree condition (b.d.c.) Every vertex has degree at most C1d.

(2) Adjacency matrix

sup
‖x‖=1,xt1=0

‖y‖=1

|xtAy| ≤ C2

√
d.

(3) Fuzz There are no edges between vertices of ℵM , |ℵM | ≤ n
2 , and

max
u∈ℵc

M

e(uℵM) ≤ 1,

where e(U, V) denotes the number of edges between sets of vertices U

and V.

(4) Parallel eigenspaces

sup
‖x‖=1,

xtT1/21W=0

|xtT−1/21ℵc
M
| ≤ C3

√
n

d
.

The final condition states that a vector x that is orthogonal to the kernel of L will not

have such a large component in the direction of the principal eigenvector of T−1/2A.

The vector 1ℵc
M

can be considered as a good approximation to this principal right

eigenvector. Otherwise said, the 0–eigenspace of L and the principal right eigenspace

of T−1/2A are nearly parallel.

With these definitions we can now state our main result on spectral gaps.
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18 C. Hoffman et al.

Lemma 4.1. Let G be a graph on n vertices and let C1, C2, C3 and M be constants. If G

satisfies the four conditions above then there is a constant C = C(C1, C2, C3, M) so that

max
i>I+1

∣
∣1− λi

∣
∣ <

C√
d

.

Proof. Let W be the set of vertices x for which deg x > 0. By the spectral theorem,

L admits a basis of orthogonal eigenvectors. Let v be a normalized eigenvector of L

corresponding to an eigenvalue λi with i > I + 1. Setting l1, l2, . . . , lI to be the isolated

vertices, a basis for the kernel of L is given by {T1/21, δl1 , δl2 , . . . , δlI }, where δa is 1 in the

ath coordinate and 0 elsewhere. As v is orthogonal to all of these, it is orthogonal to

T1/21W . Hence,

∣
∣1− λi

∣
∣ =

∣
∣
∣vtT−1/2AT−1/2v

∣
∣
∣ ≤ sup

‖x‖=1,
xtT1/21W=0

∣
∣
∣xtT−1/2AT−1/2x

∣
∣
∣ .

As this holds for all such i > I + 1, it suffices to bound the right-hand side.

Orthogonally decompose T−1/2x = u+ v, where u is supported on vertices in ℵc
M

and v is supported on vertices in ℵM . Further decompose u = u0 + u1 by letting u1 be

the projection of u along 1ℵc
M

. Expanding the quadratic form, we may write

∣
∣
∣xtT−1/2AT−1/2x

∣
∣
∣ ≤ 2|ut

0Au| + |ut
1Au1| + |vtAv| + 2|vtAu|. (3)

Each of these terms will be seen to have the right order bound, completing the proof.

As u0 ⊥ 1ℵc
M

and is supported only on ℵc
M , we have that u0 ⊥ 1. By the definitions

of ℵM and x, we have that

‖u0‖2 ≤ ‖u‖2 =
∑

i∈ℵc
M

|xi|2
deg i

≤ M

d
.

Hence, by the adjacency matrix condition and the above equation we have that

|ut
0Au| ≤ C2

√
d‖u0‖‖u‖ ≤

C2M√
d

. (4)

As u1 is the projection of u along 1ℵc
M

, we have

u1 = (ut1ℵc
M

)
1ℵc

M

|ℵc
M |

= (xtT−1/21ℵc
M

)
1ℵc

M

|ℵc
M |

.
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Spectral Gaps of Random Graphs 19

Because |ℵc
M | ≥ n

2 , the parallel eigenspaces condition implies that we have ‖u1‖ ≤
√

2C3
d .

The norm of A is at most the maximum degree of the graph, and by the b.d.c. this is at

most C1d. Hence, we get that

|ut
1Au1| ≤

2C1C2
3

d
(5)

For the 3rd term, we note that by the ℵM condition there are no edges between

vertices of ℵM , and hence

vtAv = 0. (6)

Finally, we may expand vtAu as

vtAu =
∑

i∈ℵM

xi√
deg i

∑

j∈ℵc
M ,

j∼i

uj.

By Cauchy–Schwarz, this is bounded by

|vtAu|2 ≤
∑

i∈ℵM

1

deg i

( ∑

j∈ℵc
M ,

j∼i

uj

)2

≤
∑

i∈ℵM

∑

j∈ℵc
M ,

j∼i

(
uj

)2
.

Now each j ∈ ℵc
M has at most one neighbor in ℵM , and hence we have

∣
∣vtAu

∣
∣ ≤ ‖u‖ =

√
M√
d

. (7)

Plugging (4), (5), (6), and (7) into (3) completes the proof. �

In the remainder of this section we prove a condition on a graph that will imply

an upper bound on the spectral gap. This lemma shows that our previous argument

breaks down when the set ℵM fails to be isolated.

Lemma 4.2. Suppose that H is a connected graph and that there are vertices u, v, w, x

for which the induced graph on u, v, w, x is a path with endpoints u and x. Suppose

further that deg v = deg w = 2 and deg u, deg x ≥ m. Let 0 = λ1 ≤ λ2 ≤ · · · ≤ λ|H| be the

eigenvalues of the normalized Laplacian L[H], then

λ|H| ≥ 3
2
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20 C. Hoffman et al.

and

λ2 ≤ 1
2 + O(1/

√
m).

Proof. For each case, we construct an appropriate approximate eigenvector. For the

first, consider the vector f with f (v) = 1, f (w) = −1 and f (y) = 0 for all other y. This

vector is orthogonal to T1/21, the 1st eigenvector of L. Now T−1/2f is just f /
√

2 while

f tAf = −2. Thus,

f tT−1/2AT−1/2f

‖f ‖2 = −1

2
,

and so λ|S| ≥ 1− −1
2 = 3

2 .

For the lower bound let f be given by f (v) = f (w) = 1/
√

2 while f (x) = −1/
√

deg x

and f (u) = −1/
√

deg u. Then we have f ⊥ T1/21. By direct computation,

f tT−1/2AT−1/2f = 1

2
− 1

deg x
− 1

deg u
,

while

‖ f ‖2 ≤ 1+ 1

deg x
+ 1

deg u
.

Thus, combining everything, we have that

λ2 ≤ 1−
1
2 − 2

m√
1+ 2

m

= 1
2 + O(1/

√
m).

�

5 Probability Bounds

In this section we show various estimates on G(n, p), which when combined with the

deterministic lemmas on spectral gaps from the previous section, will complete the

proofs of Theorems 1.1 and 1.2. In this section we again use that d = (n − 1)p is the

expected degree of a vertex.

Lemma 5.1. For each δ > 0 and m ≥ 0, there is a constant C = C(δ, m) so

that the following conditions hold with probability at least 1 − C exp(−md) and

1− C exp(−md1/4 log n), respectively, in G(n, p) with p ≥ δ log n/n.

(1) B.d.c Every vertex has degree at most Cd.

(2) Discrepancy For every pair of vertex sets A and B, letting e(A, B) denote the

number of edges between the sets and μ(A, B) = |A||B|d
n , one of
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Spectral Gaps of Random Graphs 21

(a) e(A,B)
μ(A,B)

≤ C

(b) e(A, B) log e(A,B)
μ(A,B)

≤ C(|A| ∨ |B|) log n
|A|∨|B|

(c) |A| ≤ d1/4/100, |B| ≤ d1/4/100

(c) occurs.

Both of these bounds are consequences of tail bounds of binomial variables, and

they are relatively standard in the literature (see, e.g., [12, 18, 22]). This one differs in

that we look for more control over the order of decay of the failure probability.

Proposition 5.2. For each δ > 0 and m ≥ 0, there is a constant C = C(δ, m) sufficiently

large so that if p ≥ δ log n/n then

sup
‖x‖=1,xt1=0

‖y‖=1

|xtAy| ≤ C
√

d

with probability at least 1− C exp(−md1/4 log n)− C exp(−md).

This follows from the standard Kahn–Szemerérdi argument, and it is essentially

proven in both Feige and Ofek [18] and the original Friedman, Kahn, and Szemerérdi

paper [22]. This version has a sharper estimate on the failure probability than [18],

which in turn follows from Lemma 5.1. We will delay the proof of both this and the

previous lemma to Section 9.

Additionally, the b.d.c. is needed to make estimates about low-degree vertices.

Recall the definition of ℵM from (2). We show that this set is both small and structurally

very simple for sufficiently large M.

Proposition 5.3. For each δ > 0 and each ε > 0, there is an M = M(δ, ε) > 1 such that

for p ≥ (1
2 + δ) log n/n, G(n, p) satisfies the following:

(1) |ℵM | < n/(100d);

(2) ℵM is an independent set; and

(3) maxu∈ℵc
M

e(uℵM) ≤ 1

with probability at least 1− Cn exp(−(2− ε)d)− C exp(−cn) for some absolute constant

c > 0.

Proof. (i) We start by estimating the size of ℵM , which we do by a simple union bound.

Namely by symmetry we have

Pr
[|ℵM | ≥ k

] ≤
(

n

k

)
Pr
[
deg ui ≤ d/M, 1 ≤ i ≤ k

]
.
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22 C. Hoffman et al.

Let S be the set of vertices uk+1, . . . , un, then we have

Pr
[
deg ui ≤ d/M, 1 ≤ i ≤ k

] ≤ Pr
[
e(uiS) ≤ d/M, 1 ≤ i ≤ k

]
,

which are now independent Binom(n− k, p) variables. Applying Lemma A.1, we get

log Pr
[|ℵM | ≥ k

] ≤ k
[
(1+ log

n

k
)− (d− kp)+ d

M
(1+ log(M))

]
.

Setting k = [n/(100d)], we may make M sufficiently large that

(1+ log
n

k
)− (d− kp)+ d

M
(1+ log(M)) ≤ −d

2

for all n ≥ n0(δ). Hence, we have that |ℵM | < n/(100d) with probability at least

1− O exp(−cn) for some absolute constant c > 0.

(ii) We begin by bounding the probability that there is an edge between any two

vertices of ℵM . Note that we may assume that d < n/100, lest ℵM = ∅ by the previous

bound.

From the union bound and symmetry, we have that

Pr
[ℵM is not an independent set

] ≤ n2 Pr [v ∈ S, w ∈ S, v ↔ w] .

Thus, it suffices to compute this probability, which we do by conditioning deg v = d1

and deg w = d2. Note that the law of the neighborhood N of {v, w} under this

conditioning is not uniform over all such neighborhoods. For a possible neighborhood

H of {v, w}, let E(H) denote the number of edges in this neighborhood. Then we have

that

Pr
[
N = H

∣
∣deg v = d1, deg w = d2

] = 1

Z

(
p

1− p

)E(H)

,

for a suitable normalization constant Z.

Thus, we have that

Pr
[
v ↔ w

∣
∣deg v = d1, deg w = d2

] ≤ Pr
[
v ↔ w

∣
∣deg v = d1, deg w = d2

]

Pr
[
v � w

∣
∣deg v = d1, deg w = d2

]

= 1− p

p

( n−2
d1−1

)( n−2
d2−1

)

(n−2
d1

)(n−2
d2

) .
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As we consider only d1 and d2 that are less than d/M, and as d < n/100, we may bound

this as Cd/n for some absolute constant C. It remains to estimate the probability that

both v and w are in ℵM . Hence, we have

Pr
[
deg v ≤ d/M, deg w ≤ d/M

] ≤ Pr
[
X ≤ d/M

]2 ,

where X ∼ Binom(n− 2, p). Applying Lemma A.1, we have that

Pr
[
deg v ≤ d/M, deg w ≤ d/M

] ≤ exp
[
−2d+ 2d

M
(1+ log M + O(1))

]
. (8)

Thus, by adjusting M to be sufficiently large, we have

Pr
[ℵM is not an independent set

] = O(nd exp(−(2− ε/2)d)) = O(n exp(−(2− ε)d)).

(iii) This follows in much the same way as the proof of (ii). Here though, we

require that the degrees of ℵc
M are not too large. By Lemma 5.1, these degrees can be

bounded by some Cd with probability at least 1 − O(exp(−2d)), and so it suffices to

assume it. From the union bound and symmetry, we have that

Pr
[∃u ∈ ℵc

M : e(uℵM) ≥ 2 ∩ b.d.c.
]

≤ n3 Pr
[
u ∈ ℵc

M , v ∈ ℵM , w ∈ ℵM , u ↔ v, u ↔ w ∩ b.d.c.
]

.

Again we condition on the degrees deg u = d1, deg v = d2, and deg w = d3, and bound

Pr
[
u ↔ v, u ↔ w

∣
∣deg u = d1, deg v = d2, deg w = d3

]

≤ Pr
[
u ↔ v, u ↔ w

∣
∣deg u = d1, deg v = d2, deg w = d3

]

Pr
[
u � v, u � w, v � w

∣
∣deg u = d1, deg v = d2, deg w = d3

]

=
(

1− p

p

)2
( n−3
d1−2

)( n−3
d2−1

)( n−3
d3−1

)+ p
1−p

( n−3
d1−2

)( n−3
d2−2

)( n−3
d3−2

)

(n−3
d1

)(n−3
d2

)(n−3
d3

) .

As before, we have d1 and d2 are less than d/M. As we also require the b.d.c. to hold, we

may take d1 ≤ c1d and as d < n/100, we may bound this as Cc1d2/n2 for some absolute

constant C.

From (8), we have that

Pr
[
v ∈ ℵM , w ∈ ℵM

] = O(exp(−(2− ε/2)d)),
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and so we conclude that

Pr

[

max
u∈ℵc

M

e(uℵM) > 1

]

= O(n exp(−(2− ε)d)).

�

Our next lemma shows that the variance of the degree distribution is not too

much larger than its expectation.

Lemma 5.4. For each fixed δ > 0 and m ≥ 0, there is a constant C = C(δ, m) sufficiently

large so that if p ≥ δ log n/n then

∑

v∈V

(deg v − d)2 ≤ Cnd

with probability at least 1− C exp(−md).

Proof. Note that this sum is the square Euclidean norm of the vector (A−dI)1. Further,

it is possible to write the norm as

‖(A− dI)1‖ = sup
‖x‖=1

|xt(A− dI)1|.

For any fixed vector x, we orthogonally decompose it as x = v + c1, where |c| ≤ 1/
√

n.

We have that vt(A−dI)1 = vtA1, and so by Proposition 5.2, for any m there is a constant

C so that

sup
‖v‖=1
vt1=0

|vtA1| ≤ C
√

nd

with probability at least 1− O(exp(−md)). It remains to bound 1t(A− dI)1, which is

1t(A− dI)1 =
(
∑

v∈V

deg v

)

− nd.

Note that
∑

v∈V deg v ∼ 2 Binom(
(n

2

)
, p), and so by standard Chernoff bounds, we have

that

Pr
[∣∣1t(A− dI)1

∣
∣ ≥ t

] ≤ C exp(− t2

Cnd
)

for some absolute constant C and all t ≤ nd. By taking t = mn
√

d, we have that
∣
∣1t(A− dI)1

∣
∣ ≤ mn

√
d with probability at least 1 − O(exp(−mn)) for sufficiently
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large n. Recalling that |c| ≤ 1/
√

n, we have that

∣
∣c1t(A− dI)1

∣
∣ = O(

√
nd),

which completes the proof. �

Using the previous lemma, we show that T−1/2 tends to map the orthogonal

complement of the 1st eigenvector of M to the approximate orthogonal complement of

the 1st eigenvector of A.

Lemma 5.5. Let W be the set of vertices x for which deg x > 0, and let ℵM be as in

Proposition 5.3. For each δ > 0 and m ≥ 0, there is a constant C = C(δ, m) sufficiently

large so that if p ≥ δ log n/n then

sup
‖x‖=1,

xtT1/21W=0

|xtT−1/21ℵc
M
| ≤ C

√
n

d

with probability at least 1− C exp(−md).

Proof. As we have that |ℵM | < n/(100d) by Proposition 5.3, it follows that

|xtT1/21ℵM
| ≤ ‖T1/21ℵM

‖ ≤
√

d|ℵM | = O
(√

n
)

.

Further, we have that xtT1/21ℵM
= −xtT1/21ℵc

M
, and hence it suffices to show that

sup
‖x‖=1,

xtT1/21=0

∣
∣
∣xt(T−1/2 − T1/2/d)1ℵc

M

∣
∣
∣ ≤ C

√
n

d
.

Taking norms,
∣
∣
∣xt(T−1/2 − T1/2/d)1ℵc

M

∣
∣
∣ ≤

∥
∥
∥(T−1/2 − T1/2/d)1ℵc

M

∥
∥
∥ .

Squaring this norm, we get

∥
∥
∥(T−1/2 − T1/2/d)1ℵc

M

∥
∥
∥

2 =
∑

v∈ℵc
M

(
1

√
deg v

−
√

deg v

d

)2

≤ M

d3

∑

v∈ℵc
M

(deg v − d)2 .

Lemma 5.4 completes the proof. �
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Proof of Theorem 1.1 We show that we satisfy the conditions in Lemma 4.1. In

Lemma 5.1, we show the b.d.c. In Proposition 5.2, we show the adjacency matrix

condition. In Proposition 5.3, we show the fuzz condition. Finally, in Lemma 5.5,

we show the parallel eigenspaces condition. Summing the failure probabilities, the

failure probability in Theorem 1.1 is the sum of Cn exp(−(2− ε)d) from Proposition 5.3

and C exp(−md1/4 log n) from Proposition 5.2, with all other errors much smaller in

magnitude. Without the condition that p ≥ (1
2 + δ) log n/n, for some δ > 0, the failure

probability in Proposition 5.3 is not in control. �

We wish to now show the lower bounds for λ(G̃). We will use Lemma 4.2, and

this requires that we show the following.

Proposition 5.6. If p = ω(
√

log n/n) and p ≤ 1
2 log n/n then w.h.p., there are four

distinct vertices a, b, c, d in the giant component for which the degrees of a and d are

at least np/2, the degrees of b and c are 2, and the induced subgraph on (a, b, c, d) is a

path.

We first show by the 2nd moment method that such four-tuples (a, b, c, d) exist in

the graph w.h.p. We then show that w.h.p., the small components have maximal degree

o(np), and hence these four tuples must have been part of the giant component.

Lemma 5.7. Suppose that p = ω(1/n) and that p ≤ 1
2 log n/n. Then, w.h.p., there are

four-tuples (a, b, c, d) for which the degrees of a and d are at least np/2, the degrees of

b and c are 2, and the induced subgraph on (a, b, c, d) is a path.

Proof. Define the pair of events

A(a, b, c, d) = {a ↔ b ↔ c ↔ d, deg b = deg c = 2} and

B(a, b, c, d) = A(a, b, c, d) ∩ {deg a ≥ np/2, deg d ≥ np/2}.

Set S to be the number of occurrences of B, that is,

S =
∑

a,b,c,d

1[B(a, b, c, d)],

with the sum over ordered four tuples of distinct vertices (a, b, c, d). We need to show

that S > 0 w.h.p.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rnz077/5482272 by guest on 13 July 2019
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The probability of A can be explicitly calculated as

Pr
[
A(a, b, c, d)

] = p3(1− p)2(n−3).

Meanwhile, conditional on A(a, b, c, d), the probability of B(a, b, c, d) is exactly the

probability of having two specific vertices of degree at least np/2 − 1 in G(n − 2, p).

Set Q = Pr
[
X ≥ np/2

]
, where X ∼ Binom(n, p). Note that as np → ∞, we have that

Q = 1− o(1).

Furthermore, as np →∞ we have that

Pr
[
B(a, b, c, d)|A(a, b, c, d)

] = Q2(1− o(1)),

simply by conditioning on the edge between a and d. By summing over all possible

tuples, it follows that ES = �(nQ2(np)3e−2np) = ω(1).

For the variance of S, we need to compute probabilities of the pairs B((ai)
4
i=1) ∩

B((bi)
4
i=1). Note that if a2 = b2 then the only way both can happen is if ai = bi for all

i ∈ [4]. Analogous conclusions hold if a2 = b3 or if a3 ∈ {b2, b3}. Thus, the only nontrivial

way for the events B((ai)
4
i=1) and B((bi)

4
i=1) to intersect is if

(1) all ai and bi are distinct;

(2) a1 = b1 and the rest are distinct;

(3) a1 = b1, a4 = b4, and the rest are distinct; or

(4) ai = bi for all i.

Note that there’s no need to consider a1 = b4, as the event B((bi)
4
i=1) is preserved under

reversing the ai. Likewise, there’s no need to consider a4 = b4, as one can reverse both

ai and bi. Set Ti to be the pairs of tuples satisfying each of the four cases.

If the pair is in T1, then

Pr
[
B((ai)

4
i=1) ∩ B((bi)

4
i=1)

∣
∣
∣A((ai)

4
i=1) ∩ A((bi)

4
i=1)

]
= Q4(1− o(1))

as once more; this is the statement that four vertices in G(n− 4, p) have degree at least

(np/2− 1). We also have that

Pr
[
A((ai)

4
i=1) ∩ A((bi)

4
i=1)

]
= p6(1− p)4n−16,

so that

Pr
[
B((ai)

4
i=1) ∩ B((bi)

4
i=1)

]
= Pr

[
B((ai)

4
i=1)

]2
(1− o(1)).
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Thus, the contribution of the pairs in T1 to the variance of S is o((ES)2).

For terms from T2, the same reasoning as above shows that

Pr
[
B((ai)

4
i=1) ∩ B((bi)

4
i=1)

]
= Q3p6(1− p)4n(1− o(1)).

For such pairs, however, we have that |T2| = �(n7), and hence the contribution to the

variance of S is o((ES)2). In the same way, the contributions of T3 and T4 are smaller

still. As each is individually of order o((ES)2), we have that S > 0 w.h.p. �

Lemma 5.8. Suppose that p = ω(1/n), then for any ε > 0, the number of vertices not

in the giant component is at most ne−(1−ε)np w.h.p.

Proof. Set R to be the number of vertices not in the largest component of G(n, p). If

W is the set of these vertices, then W satisfies e(W, Wc) = 0. Therefore, if there is no

collection W of at least r vertices such that e(W, Wc) = 0, then R < r.

The expected number ENr of such collections W is given by

ENr = (1− p)r(n−r)
(

n

r

)
.

Set r0 = ne−(1−ε)np. We will show that
∑n/2

r=r0
ENr → 0, which implies the lemma.

Subdivide the sum into two pieces S1 and S2, given by S1 = ∑�εn/4�
r0

ENr and

S2 =
∑n/2
�εn/4� ENr. For �εn/4� ≤ r ≤ n/2,

ENr = (1− p)r(n−r)
(

n

r

)
≤ e−cεn2p2n,

for some cε > 0, which decays exponentially in n as np →∞. Hence, S2 → 0.

As for S1, we claim that for any α > 0 there is an n ≥ n0(α, ε) sufficiently large

so that for all r0 < r < εn/4, ENr+1 ≤ αENr for all n ≥ n0(α, ε). Estimating for these r,

ENr+1

ENr
= (1− p)n−2r+1 n− r − 1

r + 1

≤ ne−np+2rp

r
.

≤ ne−(1−ε/2)np

r
.

≤ e−εnp/2.
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Hence, as np →∞, this is eventually less than any positive α.

As S1 is dominated by a geometric series S1 = O(ENr0
). For this leading term, we

get that

ENr0
≤ e−pr0(n−r0)

(
en

r0

)r0

≤ exp
(
−εn2pe−(1−ε)np(1− o(1))

)
→ 0,

completing the proof. �

Lemma 5.9. If p = ω(
√

log n/n), then w.h.p., the maximum degree of the vertices not

in the giant component is at most np/100.

Proof. Set R to be the number of vertices not in the giant component. By Lemma 5.8,

we have that R ≤ ne−np/2 w.h.p. Suppose that W is a fixed collection of vertices of

size r. Conditional on there being no edges between W and Wc, the law of the induced

graph on W is simply that of G(r, p).

Let X ∼ Binom(r − 1, p). Then by Lemma A.2 there are absolute constants c > 0

and M > 0 so that

Pr
[
X > np/100

] ≤ exp(−cnp log(n/r))

provided r < n/M. Setting EW to be the event that W and Wc are not connected,

Pr
[
max
w∈W

deg w > np/100

∣
∣
∣
∣EW

]
≤ r exp(−cnp log(n/r)).

Let Y be the max degree of all vertices not in the largest component As the previous

bound holds for all W in consideration, we get that

Pr
[
Y > np/100|R = r

] ≤ r exp(−cnp log(n/r)).

This bound is monotone increasing in r, and so we get that

Pr
[
Y > np/100

∣
∣
∣R ≤ ne−np/2

]
≤ n exp(−c(np)2(1− o(1)))

for some absolute constant c. Thus, by the assumption on np, the desired claim

holds. �

Proof of Theorem 1.2 and Proposition 5.6 For Proposition 5.6, the previous three

Lemmas 5.7, 5.8, and 5.9 show the desired claim that w.h.p. there are tuples (a, b, c, d)
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of vertices in the giant component for which deg a and deg d are at least np/2, vertices

b and c have degree 2, and the induced graph on these vertices is a path.

Letting H be the giant component of the graph, then there is a constant C so that

the eigenvalues of the Laplacian of H satisfy

λ|H| ≥ 3
2

and

λ2 ≤ 1
2 + C/

√
np

by Lemma 4.2. �

6 Gap Process Theorem

In this section we prove a general process-version theorem for the spectral gap below

the connectivity threshold. We recall the definition of Yd
t (n), the continuous time Linial–

Meshulam process. Let Fk denote the collection of all possible k–faces on n vertices, and

let Fk(S) for simplicial complex S be all k–faces of S. Let {Tσ , σ ∈ Fk} be an i.i.d. family of

Exp(1) variables. Define {Yd
t (n), t ≥ 0} to be the continuous time Markov process where

Yd
t (n)[0][k] is the complete (k− 1)-skeleton of the n-simplex and its k-faces are given by

Fk(Yd
t (n)) = {σ ∈ Fk : Tσ ≤ t}.

Thus, Yd
t (n) is the complex whose k-faces have been born up to time t, and Yd

t (n)[∞][k]

is the complete k-skeleton of the n-simplex. For k = 1, this recovers the standard

continuous time Erdős–Rényi process. For fixed t, Yd
t (n) is the Bernoulli complex

Yk(n, p(t)) with p(t) = 1 − e−t. Let d(t) = (n − 1)p(t). Fix δ ∈ (0, 1
2 ) and define t0 by

the relation that

p(t0) =
⎧
⎨

⎩

(1
2 + δ) log n/n k = 1,

(k− 1+ δ) log n/n k > 1.

For any (k − 2)–dimensional face f of a k–dimensional simplicial complex S, we

identify its link with a graph, denoted lk(f ). We will only consider links of (k − 2)–

dimensional faces. This graph lk(f ) has vertex set given by all (k−1)–dimensional faces

containing f . Two of these edges e and g are connected if and only if e ∪ g, which is a

k–dimensional face, is contained in S.
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For example, when k = 1 and S is a graph, the only (k − 2)–dimensional face is

the empty set. Its link has vertex set given by all 0–dimensional faces (all vertices), and

vertices are connected if and only if they are contained in an edge. Hence, in this case

lk(∅) can be identified with the original graph S.

In Yd
t (n), which has a complete (k − 1)–skeleton, each link is distributed as a

G(n− k+ 1, p(t)). These links {lk(f )}, where f ranges over all (k− 2)–dimensional faces,

are not independent, and in fact are analysis rests in some ways on exploiting their

exact dependency structure.

Recall that we refer to a (k− 1)–dimensional face f as isolated if and only if it is

not contained in any k–dimensional face. Note that a face f is isolated if and only if it

is an isolated vertex in lk(g) for all (k− 2)–dimensional g ⊂ f .

Theorem 6.1. Let Ỹk
t (n) denote the process derived from Yd

t (n) by removing every

isolated (k − 1)-face. There is a constant C = C(k, δ) so that w.h.p. the normalized

Laplacian of lk(f ) of every dimension–(k− 2) face f of Ỹk
t (n) has

max
i>1

∣
∣1− λi

∣
∣ <

C√
d(t)

for all t ≥ t0.

An equivalent formulation is that each lk(f ) for codimension-2 f ∈ Yd
t (n)

consists of isolated vertices and a giant component whose gap is 1 − C/
√

d(t) for

all time t ≥ t0. In the higher-dimensional setting, the proof is more complicated

than simply studying each link individually and taking the union bound. The

key is to study the “fuzz” globally. To this end, for each lk( f ) and for any

M ≥ 1, let

ℵ f
M(t) = {w ∈ V(lk(f )) : deglk(f )(w) ≤ d(t0)/M}. (9)

Note that this makes each ℵM [f ][t] monotone decreasing in t.

Lemma 6.2. There is an M = M(k, δ) and an ε = ε(k, δ) so that

∑

f∈Fk−2

∣
∣ℵM [f ][t0]

∣
∣ 2 ≤ n1−ε

with overwhelming probability.
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Proof. For k = 1, there is only one link to consider, and so it suffices to show that∣
∣
∣ℵ∅M [t0]

∣
∣
∣ ≤ n1/2−ε . For k > 1, we proceed by showing that for any ε there is an M so that

both

(1) maxf∈Fk−2

∣
∣
∣ℵ f

M(t0)

∣
∣
∣ ≤ nε and

(2)
∑

f∈Fk−2

∣
∣
∣ℵ f

M(t0)

∣
∣
∣ ≤ n1−2ε

hold with overwhelming probability.

The 1st condition follows from an identical argument to the 1st part of

Proposition 5.3; the k = 1 case follows from an identical argument, and we just sketch

the k > 1 case. As before, for any 1 > η > 0, there is an M(δ, η) sufficiently large so that

for a fixed set of vertices w1, w2, . . . , w�nε�,

Pr
[
deglk(f )(wi) ≤ d(t0)/M,∀1 ≤ i ≤ �nε�

]
= O(exp(−nεd(t0)(1− η))).

This overwhelms the O(exp((1− ε)nε log n)) possible choices of vertices as

d(t0)/ log n > (1+ δ)(1+ o(1))

and η may be chosen sufficiently small. As there are only O(nk−1) many links to consider,

this may be taken to hold for all links simultaneously with overwhelming probability.

We now turn to the 2nd condition. For a fixed (k − 1)-dimensional face f , let Xf

denote the number of k-faces in Yd
t (n)[t0][k] containing f . If f is a vertex in a (k − 2)-

dimensional face of Yd
t (n)[t0][k], then Xf is the degree of that vertex in lk(f ). Hence,

1

k

∑

f∈Fk−2

∣
∣
∣ℵ f

M(t0)

∣
∣
∣ =

∑

f∈Fk−1

1[Xf ≤ d(t0)/M].

Thus, by adjusting ε, it suffices to show the claim for the right-hand side. Call a

collection S of (k− 1)-faces balanced if

max
w∈Fk−2

|{σ ∈ S : w ⊂ σ }| ≤ nε .

Observe that we have shown that with overwhelming probability the set

S =
{
f ∈ Fk−1 : Xf ≤ d(t0)/M

}

is balanced with overwhelming probability.
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By symmetry we have

Pr
[
∃ f1, f2, . . . , fr ∈ Fk−1 : Xfi

≤ d(t0)/M, 1 ≤ i ≤ r, {fi} balanced
]

≤
((n

k

)

r

)
Pr
[
Xfi

≤ d(t0)/M, 1 ≤ i ≤ r, {fi} balanced
]

.

Let X denote the number of k-faces that contain some fi. If every Xfi
≤ d(t0)/M,

it follows that X ≤ rd(t0)/M. Each fi is contained in n − k possible k-faces, but

it may be possible that some fi and fj are both contained in a single k-face. If

this occurs, however, it must be that | fi ∩ fj| = k − 1. In other words, each con-

tains a common (k − 2)-face. Furthermore, there is at most one k-face that contains

both fi and fj.

A fixed face fj contains k distinct (k − 2)-faces q1, q2, . . . , qk. As {fi} is balanced,

each ql is contained in at most nε distinct fi. Thus, there are at most nεk many k-faces

that contain fj and some other fi, and this implies there are at least r(n − k − nεk)

distinct possible k-faces that contain some fi. It follows that X stochastically dominates

a Binom
(⌈

r(n− k− nεk)
⌉
, p(t0)

)
variable. Applying Lemma A.1, we get

Pr
[
Xfi

≤ d(t0)/M, 1 ≤ i ≤ r, {fi} balanced
]
≤ Pr

[
X ≤ rd(t0)/M

]

≤ exp
(
−r(n− k− nεk)p(t0)+ rd(t0)

M (1+ log M(1+r(n−k−nεk))p(t0)
rd(t0)

)
)

.

Thus, we get

log Pr
[
∃f1, f2, . . . , fr : Xfi

≤ d(t0)/M, 1 ≤ i ≤ r
]

≤ r
[
(k log n− log r)− d(t0)+ d(t0)

M
(1+ log(M))

]
(1+ o(1)).

Since d(t0) ≥ (k−1+δ) log n−o(1), we can set r = [n1−δ/2] and make M sufficiently large

that

(k log n− log r)− d(t0)+ d(t0)

M
(1+ log(M)) →−∞.

Taking ε = δ/4, we have shown the desired claim. �

With global control on the number of exceptional vertices, the proof now reduces

to essentially a union bound over all later times and links.
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Lemma 6.3. There is a constant C = C(k) so that w.h.p., every lk( f ) where f ∈ Yd
t (n)

has dimension (k− 2) satisfies the following:

(1) B.d.c Every vertex has degree at most Cd(t).

(2) Adjacency matrix The adjacency matrix of the link satisfies

sup
‖x‖=1,xt1=0

‖y‖=1

|xtAy| ≤ C
√

d(t).

(3) Parallel eigenspaces Setting ℵM = ℵM [ f ][t] and T to be the diagonal matrix

of degrees of the link

sup
‖x‖=1,

xtT1/21W=0

|xtT−1/21ℵc
M
| ≤ C

√
n

d(t)

for all t ≥ t0.

Proof. Let I be the interval [t1, t2], where t0 ≤ t1 ≤ t2. The probability that there are

two faces that appear in this interval can be bounded by

Pr
[∃σ1, σ2 : Tσ1

∈ I and Tσ2
∈ I

] ≤
(

n

k

)2 (
p(t2)− p(t1)

)2 .

Let r be the smallest integer so that p(t0) + rn−2k−1 ≥ 1. Set pi = p(t0) + in−2k−1 for all

0 ≤ i < r, and set pr = 1. Let ti be such that p(ti) = pi, and set tr = ∞. Note that for

t ∈ [ti, ti+1), Yd
t (n) �= Yk

ti
(n) and Yd

t (n) �= Yk
ti+1(n) imply there must be two faces σ1 and

σ2 for which Tσ1
, Tσ2

∈ [ti, ti+1). Hence,

Pr
[
∃t ≥ t0 : Yd

t (n) �= Yk
ti
(n)∀0 ≤ i ≤ r

]
≤

r−1∑

i=0

Pr
[∃σ1, σ2 : Tσ1

, Tσ2
∈ I

]

≤
r−1∑

i=0

n−2k−2 ≤ n−2.

By applying Lemma 5.1, Proposition 5.2, and Lemma 5.5 with m sufficiently

large, we may thus assure that there is a constant sufficiently large that these properties

occur for all links of all Yk
ti
(n), for 0 ≤ i ≤ r − 1. �
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Lemma 6.4. There is an M = M(k, δ) and a constant C = C(M, k) so that with t1

satisfying p(t1) = C log n/n, all ℵ f
M(t) = ∅ for t ≥ t1 w.h.p. Further, for all t1 ≥ t ≥ t0

every lk(f ) of Yd
t (n) satisfies the following:

(1) |ℵM | ≤ n
2 ;

(2) ℵM is an independent set; and

(3) maxu∈ℵc
M

e(uℵM) ≤ 1

with ℵM = ℵ f
M(t).

Proof. There is an M1 so that this holds for Yk
t0

(n) by Proposition 5.3 and by taking the

union bound over all links. Likewise, there is an M2 so that the conclusions of Lemma 6.2

holds. Take M to be the maximum of these, and note that from monotonicity, the

conclusions of both the proposition and lemma hold. As ℵ f
M(t) is monotone in t also,

we have that

|ℵ f
M(t)| ≤ |ℵ f

M(t0)| ≤ n/2

is satisfied for all n sufficiently large.

From a union bound and Lemma A.1, we may choose C = C(M, k) sufficiently

large so that with probability going to 1,

ℵ f
M(t1) = ∅

for all f ∈ Fk−2.

Let τi be the times at which the ith face is added to Yd
t (n) after time t0, and

let τ0 = t0. Likewise, let �i denote the ith face, and let F (τi) = σ(Yk
t1

(n)). Let N

denote the largest i so that τi ≤ C log n/n. From Chernoff bounds, there are at most

100C(log n)nk many k-dimensional faces in Yk
t1

(n) with overwhelming probability, and

hence N ≤ 100(log n)nk with overwhelming probability.

We begin by bounding the probability that a newly added face creates an edge

between two vertices of ℵ f
M(t) for some f ∈ Fk−2.

Pr
[
∃u, v ∈ ℵ f

M(τi) : u, v ∈ �i+1

∣
∣
∣F (τi)

]
≤ |ℵ f

M(τi)|2
|Fk| − |Yk

t1
(n)| (10)

≤ |ℵ f
M(τ0)|2

|Fk| − |Yk
t1

(n)| .
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Let Ei,f denote the event that

(1) the number of k–dimensional faces |Yk
t1

(n)| ≤ 100Cnk log n,

(2)
∑

f∈Fk−2
|ℵ f

M(t0)|2 ≤ n1−ε ,

(3) there exists u and v in ℵ f
M(τi) so that u ∈ �i+1 and v ∈ �i+1.

By conditioning, we have that

Pr
[
∪i,f Ei,f

]
≤ E

N∑

i=0

∑

f∈Fk−2

|ℵ f
M(τ0)|21{Ei,f }
|Fk| − |Yk

t1
(n)|

≤ E

N∑

i=0

∑
f∈Fk−2

|ℵ f
M(τ0)|21{Ei,f }

|Fk| − 100Cnk log n

≤ E

N∑

i=0

n1−ε1[Yk
t1

(n) ≤ 100Cnk log n]

|Fk| − 100Cnk log n

≤ (100Cnk log n)n1−ε

|Fk| − 100Cnk log n
= O(n−ε log n).

Thus, w.h.p., no face added between t0 and t1 creates an edge between two elements of

any ℵ f
M(t).

We now turn to bounding the probability that a newly added face connects an

element of ℵ f
M(t) to a neighbor of ℵ f

M(t). Let N f
M(t) be the set of neighbors of ℵ f

M(t), and

let D(t) be an upper bound for the degree of a vertex of any link of Yd
t (n). Note that

|N f
M(t)| ≤ D(t)|ℵ f

M(t)|. Then

Pr
[
∃u ∈ ℵ f

M(τi), v ∈ N f
M(t) : u, v ∈ �i+1

∣
∣
∣F (τi)

]
≤ D(τi)|ℵ f

M(τi)|2
|Fk| − |Yk

τi
(n)| .

W.h.p., there is a constant K so that all the degrees can be bounded by K log n for all

t ≤ t1. This failure probability is at most a logarithmic factor more than the failure

probability in (10). Hence, the same proof shows that w.h.p., no added face increases

max
u∈V(lk(f ))\ℵ f

M (t)
e(u,ℵ f

M(t)).

�

Proof of Theorem 6.1 We are essentially ready to apply Lemma 4.1. The only concern

is that in (9), the set ℵ f
M(t) is defined in terms of d(t0) and not d(t). However, as noted in

Lemma 6.4, all these sets disappear once p(t1) = C log n/n, at which point d(t) has only
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risen by a factor of K = p(t1)
p(t0)

. Thus,

Qf (t) = {w ∈ V(lk(f )) : deglk(f )(w) ≤ d(t)/KM} ⊆ ℵ f
M(t),

for all t ≤ t1, and by monotonicity, all the desired properties of ℵ f
M(t) transfer to Qf (t).

Thus, Lemmas 6.3 and 6.4 show all the needed properties of Lemma 4.1 hold, completing

the proof. �

7 Cohomology Structure Theorem

The structure theorem for cohomology relies on the following theorem of

Ballman–Światkowski [3]. A simplicial complex � is called pure k–dimensional if it

is k–dimensional and every face is contained in a k–dimensional one.

Ballman–Świaa̧tkowski criterion. If � is a finite, pure k-dimensional simplicial

complex, so that for every (k − 2)-dimensional face σ , the normalized Laplacian

L = L[lk(σ )] satisfies λ2 > 1− 1
k then Hk−1(�,Q) = 0.

Proof of Theorem 3.2 Recall that we define t0 so that p(t0) = (k − 1 + δ) log n/n.

Let Ỹt denote the simplicial complex Yd
t (n) with all its isolated (k− 1)-faces deleted. By

Theorem 6.1, w.h.p. for all t ≥ t0, all links of Ỹt have λ2(L) = 1− o(1).

We need to check that Ỹt is pure k-dimensional, that is, that every face

is contained in some k-dimensional face. Note that this can only fail if there is

some (k − 2)-dimensional face of Yd
t (n) that is not contained in any k-dimensional

face. As this is a monotone property, it suffices to check that Yd
t (n)[t0][k] has no

such (k− 2)-faces.

Put I to be the number of isolated (k− 2)-faces in Yd
t (n)[t0][k]. Then

EI =
(

n

k− 1

)
(1− p(t0))n2/2(1− o(1)),

which decays exponentially in n. Hence, Ỹt is pure k-dimensional w.h.p. for all t ≥ t0,

and so Theorem 7 applies. It follows that Hk−1(Ỹt,Q) = 0, and it remains to compare

Hk−1(Ỹt,Q) and Hk−1(Yd
t (n),Q).

For what remains, fix t ≥ t0. It will follow from induction that each additional

(k − 1)-face we glue to Ỹ increases the dimension of the (k − 1)-cohomology by 1. Let

Z be the complex formed by including one of the isolated (k − 1)-faces of Y back into

Ỹ. Let B be a neighborhood of the included (k − 1)-face that is homotopic to a single
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(k− 1)-simplex. Then the Mayer–Vietoris sequence (see Chapter 3 of [29]) for the (k− 1)-

dimensional cohomology is

· · · → Hk−1(Z,Q) → Hk−1(Ỹ,Q)⊕ Hk−1(B,Q) → Hk−1(Ỹ ∩ B,Q) → Hk(Z,Q).

As Ỹ ∩ B is homotopic to a (k − 2)-dimensional sphere, Hk−1(Ỹ ∩ B,Q) = 0. Also,

Hk−1(B,Q) = Q, and so this sequence becomes

0 → Hk−1(Z,Q) → Hk−1(Ỹ,Q)⊕ Q→ 0,

or otherwise stated, Hk−1(Z,Q) ∼= Hk−1(Ỹ,Q) ⊕ Q. Each additional isolated (k − 1)-

faces increases the dimension by one by the very same argument, which completes

the proof. �

8 Property (T)

The proof here is nearly identical to the proof of the cohomology vanishing structure

theorem. To establish our results concerning property (T) of random fundamental

groups, we will use the following theorem of żuk.

żuk’s criterion. If X is a pure 2D locally finite simplicial complex so that for every

vertex v, the vertex link lk(v) is connected and the normalized Laplacian L = L[lk(v)]

satisfies λ2(L) > 1/2, then π1(X) has property (T).

Proof. of Theorem 1.4 Recall that we define t0 so that p(t0) = (1 + δ) log n/n. Let

Ỹt denote the simplicial complex Yd
t (n)[t][2] with all its isolated edges deleted. By

Theorem 6.1, w.h.p. for all t ≥ t0, all links of Ỹt have λ2(L) = 1 − o(1). Then by żuk’s

criterion, π1(Ỹt) has property (T) for all t ≥ t0.

Fix t ≥ t0. It only remains to compare the fundamental groups π1(Ỹ) and

π1(Y). But attaching a 1-cell to a connected CW complex W adds a free Z-factor to

the fundamental group π1(W), by the Seifert–van Kampen theorem (see Theorem 1.20

of [29]). So we only need to check that deleting all the isolated edges in Y does not result

in a disconnected complex Ỹ.

Removing less than n−1 edges from the complete graph Kn can not disconnect it;

indeed, to separate a component of order k form the rest of the graph requires removing

at least k(n − k) edges, which is minimized when k = 1. Thus, we need only check that

the number of isolated edges is fewer than n−1. From monotonicity, it suffices to show

that at time t0 the number of isolated edges is w.h.p. o(n).
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By linearity of expectation, the expected number of edges deleted E[D] is

given by

E[D] =
(

n

2

)
(1− p(t0))n−2

≤ 1

2
n2 exp(−p(t0)(n− 2))

≤ O
(
n1−c

)

for some constant c > 0. By the 2nd moment method, for example, D is tightly

concentrated around its mean, so w.h.p. Ỹ is connected. The claim follows. �

Corollary 3.7 quickly follows.

Proof of Corollary 3.7 Let I denote the number of isolated edges. The expected number

of isolated edges E[I] is

E[i] =
(

n

2

)
(1− p)n−2 ≤ n2e−np.

Taking p = (2 log n + f (n))/n, where f (n) → ∞, this is seen to go to 0, completing the

proof. �

9 Kahn–Szemerérdi argument

In this section we give the proof of Proposition 5.2 and Lemma 5.1, which are minor

modifications of the standard Kahn–Szemerérdi argument.

We begin with a proof of the regularity conditions.

Proof of Lemma 5.1 For any vertex v, deg(v) is a binomial random variable with mean

d > δ log(n). By Lemma A.2, P(deg(v) > c0d) ≤ exp
(
−dc0 log c0

3

)
provided c0 > 4. Thus,

taking the union bound over all vertices, we get that

Pr
[
b.d.c. fails

] ≤ exp(d(1
δ
− c0 log c0

3 )).

By taking c0 sufficiently large, we may take

1

δ
− c0 log c0

3
≤ −m,
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completing the proof of the 1st claim.

We will now turn to showing the discrepancy property, for which we need to

show there are constants ci = ci(δ, m) so that at least one of

(1) e(A,B)
μ(A,B)

≤ c1

(2) e(A, B) log e(A,B)
μ(A,B)

≤ c2(|A| ∨ |B|) log n
|A|∨|B|

(3) |A| ∨ |B| ≤ d1/4/100.

Note that these properties are monotone in ci, and so we are free to increase the

constants as need be throughout the proof.

Let D be the event that the discrepancy condition fails and let D(A, B) be the

event that the discrepancy condition fails for sets A and B. Then by the union bound

P(D) ≤ P(∃A, B with |A| ∧ |B| ≥ n/e) : D(A, B) occurs

+ P(∃A, B with |A| ∨ |B| ≥ n/e ≥ |A| ∧ |B|) : D(A, B) occurs)

+
∑

A,B: |A|∨|B|<n/e

P(D(A, B)).

Taking c1 > e2, then when |A| ∧ |B| ≥ n
e ,

e(A, B) > c1μ(A, B) > c1(n/e)2d/n > nd.

Thus, there are at least nd edges in the graph. The distribution of the number of edges

is binomial with mean n(n−1)p/2 = nd/2, and so the probability of this is going to zero

exponentially in nd, that is,

P(∃A, B with |A| ∧ |B| ≥ n/e) : D(A, B) occurs) = O(exp(−cnd)) (11)

for some absolute constant c > 0.

If |A| ∨ |B| ≥ n
e > |A| ∧ |B|, and if the b.d.c. holds, then e(A, B) ≤ (|A| ∨ |B|)c0d and

e(A, B)

μ(A, B, n)
≤ c0nd(|A| ∨ |B|)

|A||B|d = c0n

|A| ∧ |B| ≤ c0e.

Thus, taking c1 > c0e, we have that

P(∃A, B with |A| ∨ |B| ≥ n/e ≥ |A| ∧ |B|) : D(A, B) occurs) ≤ P(b.d.c. fails)

= O(exp(−md)). (12)
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Now we need to deal with the case that both A and B are less than n
e , but at

least one is greater than d1/4/100. Take c2 > 18 + 1200m. For emphasis, we will write

μ(A, B, n) = μ(A, B) = |A||B|d
n . Choose r = r(A, B, n) = c1 ∨ r1, where r1 is the solution to

μ(A, B, n)r1 log(r1) = c2(|A| ∨ |B|) log n
|A|∨|B| .

For any A, B and n we must have either

• e(A, B) ≤ rμ(A, B, n) and r = c1

• e(A, B) ≤ rμ(A, B, n) and r = r1 or

• e(A, B) > rμ(A, B, n).

Thus, if D(A, B) occurs then at least one of the following three events occur:

• D1 = D1(A, B) =
{

e(A, B) ≤ rμ(A, B, n), r = c1 and

e(A, B) > c1μ(|A|, |B|, n)

}

• D2 = D2(A, B) =
{

e(A, B) ≤ rμ(A, B, n), r = r1 and

e(A, B) log e(A,B)
μ(A,B,n)

> c2(|A| ∨ |B|) log n
|A|∨|B|

}

• D3 = D3(A, B) = {e(A, B) > rμ(A, B, n)}.
For D1 the conditions are mutually exclusive as e(A, B) can not be simultaneously

greater than and less than or equal to c1μ(A, B, n). Thus, D1(A, B) is empty. For D2 we get

similar contradiction after a little work.

e(A, B) log e(A,B)
μ(A,B,n)

> c2(|A| ∨ |B|) log n
|A|∨|B|

e(A, B) log e(A,B)
μ(A,B,n)

> μ(A, B, n)r1 log r1

e(A,B)
μ(A,B,n)

log e(A,B)
μ(A,B,n)

> r1 log r1

e(A,B)
μ(A,B,n)

> r1

e(A, B) > r1μ(A, B, n)

e(A, B) > rμ(A, B, n).

This is a contradiction so D2(A, B) is also empty.

Now we bound P(D3(A, B)). As e(A, B) is binomial with mean at most μ(A, B, n),

Lemma A.2 implies

P(D3(A, B)) ≤ exp
(
−μ(|A|,|B|,n)r log r

3

)

for any r ≥ 4.
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For all A, B we have D ⊂ D1∪D2∪D3 and P(D1(A, B)) = P(D2(A, B)) = 0. Combining

this with (11) and (12) we get

P(D) ≤ P(∃A, B : D(A, B) occurs)

≤ P(∃A, B : |A|, |B| < n/e and D(A, B) occurs) + O(exp(−md))

≤ P(∃A, B : |A|, |B| < n/e and D3(A, B) occurs) + O(exp(−md))

≤
∑

|A|,|B|
P(D3(A, B))+ O(exp(−md))

≤
∑

a,b

∑

|A|=a,|B|=b

exp
(
−μr log r

3

)
+ O(exp(−md))

≤
∑

a,b

(
n

a

)(
n

b

)
exp

(
−μ(a,b,n)r log r

3

)
+ O(exp(−md)),

where the sums are over all pairs (a, b) with d1/4/100 ≤ a∨ b ≤ n/e. To evaluate the last

term we get

μr log r
3 ≥

(
6+ 400m

)(
(|A| ∨ |B|) log n

|A|∨|B|
)

>

(
2+ 2+ 2+ (400m))

)(
(|A| ∨ |B|) log n

|A|∨|B|
)

> 2|A|(log n
|A| )+ 2|B|(log n

|B| )+ 2 log n+ 4md1/4 log 100n
d1/4

> |A|(1+ log n
|A| )+ |B|(1+ log n

|B| )+ 2 log n+ 3md1/4 log n.

The 1st line is due to the definitions of r and c2. In the 3rd line we use the monotonicity

of x log n
x on [1, n/e] by substituting in |A|, |B|, 1 and d1/4/100 for x. In the 4th line we

use that |A| ∨ |B| ≤ n
e so log n

|A| , log n
|B| > 1

Exponentiating we get

exp
[

μr log r
3

]
≥
(

en
|A|
)n (

en
|B|
)n

n2 exp(3md1/4(log n)).

It follows that

(
n

a

)(
n

b

)
exp

(
−μ(a,b,n)r log r

3

)
≤
(

n

a

)(
n

b

)
( en

a

)−n ( en
b

)−n n−2 exp(−3md1/4 log n)

≤ n−2 exp(−3md1/4 log n).
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Putting this together we get

P(D) ≤
∑

d/100≤a∨b≤n/e

(
n

a

)(
n

b

)
exp

(
−μ(a,b,n)r log r

3

)
+ O(exp(−md))

≤ n2n−2 exp(−3md1/4 log n)+ O(exp(−md)).

Thus, the lemma is satisfied. �

We finally give a quick sketch of how Proposition 5.2 follows from Lemma 5.1.

This is nearly the same as Theorem 2.5 of [18], and so we will cite heavily.

Proof of Proposition 5.2 We recall that we wish to bound

sup
‖x‖=1,xt1=0

‖y‖=1

|xtAy| ≤ C
√

d.

For this we will relax the supremum to a finite, discrete space. Define

U =
{

z

2
√

n
: z ∈ Zn, ‖z‖2 ≤ 4n

}
and T = {z ∈ U : z ⊥ 1} .

As U is 1
2-net of the sphere, and S = {x : ‖x‖ = 1, xt1 = 0} is in the convex hull of T (by

Lemma 2.3 of [18]), we have that

sup
‖x‖=1,xt1=0

‖y‖=1

|xtAy| ≤ 4 sup
x∈T
y∈U

|xtAy|.

Further, we have that |T | ≤ |U | ≤ Cn for some absolute constant C.

For a fixed pair of vectors (x, y) ∈ T × U , define the light couples L = L(x, y)

to be all those ordered pairs (u, v) ∈ {1, 2, . . . , n}2 so that |xuyv| ≤
√

d
n , and let the

heavy couples H = H(x, y) be all those pairs that are not light. We will use the notation

light(x, y) =
∑

(u,v)∈L
xuAuvyv,

and the notation

heavy(x, y) =
∑

(u,v)∈H
xuAuvyv.
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For the light couples, we recall Bernstein’s inequality, which says that for

independent, centered random variables
{
Xi

}N
1 such that |Xi| ≤ M almost surely for all

1 ≤ i ≤ N and all t ≥ 0,

Pr

[
N∑

i=1

Xi > t

]

≤ exp

(
−t2

2
∑N

i=1 EX2
i + 2

3Mt

)

.

To realize light(x, y) as a sum of independent variables, we need to account for the

symmetry in A. Let N be the number of undirected edges {u, v} so that either (u, v) or

(v, u) appear in L. Enumerate these edges and define for i with 1 ≤ i ≤ N corresponding

to {u, v} ,

Xi = (Auv − p)xuyv1[(u, v) ∈ L]+ (Auv − p)xvyu1[(v, u) ∈ L].

For our purposes, it will be enough to use the bound

N∑

i=1

EX2
i ≤

N∑

i=1

2p
{
(xuyv)2 + (xvyu)2

}
≤ 2p

∑

(u,v)

x2
uy2

v ≤ 2p,

where we have used the normalization of the vectors. In summary, by Bernstein’s

inequality,

Pr
[| light(x, y)− E light(x, y)| > t

] ≤ exp

(
−nt2

4d+ 2
3

√
dt

)

.

To control the expectation, note that on account of x ∈ T ,

E light(x, y)+ Eheavy(x, y) = 0.

However,

|Eheavy(x, y)| ≤
∑

(u,v)∈H
p|xuyv| ≤

∑

(u,v)∈H

np√
d
|xuyv|2 ≤

√
d.

As T is only of cardinality eO(N), for each m there is a constant C = C(m) so that

Pr

[

sup
(x,y)∈T ×U

| light(x, y)| > C
√

d

]

≤ Ce−mn.

To control the heavy couples, we use the discrepancy property (c.f. Corollary 2.11

of [18] or Section 2.3 of [22]). The proof is nearly identical to either of those two claims,

although it is not exactly either one, on account of the slightly altered definition of

discrepancy. �
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Lemma 9.1. Suppose c1, c2, C1 are constants greater than 1 and d > 0. There is a

constant C > 0 depending only on c1, c2, C1 so that for any graph with the property that

all degrees are bounded by C1d and for all subsets A and B of vertices

(1) e(A,B)
μ(A,B)

≤ c1

(2) e(A, B) log e(A,B)
μ(A,B)

≤ c2(|A| ∨ |B|) log n
|A|∨|B|

(3) |A| ∨ |B| ≤ d1/4/100

then for all x, y ∈ U
∑

{u,v}∈H

∣
∣xuAu,vyv

∣
∣ ≤ C

√
d.

By Lemma 5.1, all these conditions hold with the desired probability, and hence

the proof of Proposition 5.2 is complete.

Proof of Lemma 9.1 We will partition the summands into blocks where each term xu

or yv has approximately the same magnitude. Let γi = 2i, n∗ = �log2
√

n� and put

Ai =
{
u
∣
∣ γi−1√

n
≤ |xu| < γi√

n

}
, 0 ≤ i ≤ n∗.

Bi =
{
u
∣
∣ γi−1√

n
≤ |yu| < γi√

n

}
, 0 ≤ i ≤ n∗.

Let Ĥ denote those pairs (i, j) so that γiγj ≥
√

d. The contribution of the absolute sum

can, in these terms, be bounded by

∑

(u,v)∈H

∣
∣xuAu,vyv

∣
∣ ≤

∑

(i,j)∈Ĥ

γiγj

n
e(Ai, Bj).

In what follows, we will bound the contribution of the summands where |Ai| ≥ |Bj|.
By symmetry, the contribution of the other summands will have the same bound. The

heavy couples will now be partitioned into 6 classes {Ĥi}6i=1 where their contribution is

bounded in a different way. Let Ĥi ⊆ Ĥ be those pairs (i, j) that satisfy the ith property

from the following list but none of the prior properties:

(1) |Ai| < d1/4/100.

(2)
e(Ai,Bj)

μ(Ai,Bj)
≤ c1

γiγj√
d

.

(3) γj > 1
4

√
dγi.

(4) log
e(Ai,Bj)

μ(Ai,Bj)
> 1

2 log n
|Ai| .

(5) n
|Ai| > γ 4

i .

(6) n
|Ai| ≤ γ 4

i . �
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Bounding the contribution of Ĥ1

For these terms, we have that e(Ai, Bj) ≤ |Ai||Bj| ≤
√

d
10000 . Hence,

∑

(i,j)∈Ĥ1

γiγj

n
e(Ai, Bj) ≤

n∗∑

i,j=0

γiγj

n

√
d

10000
≤ 16

√
d

10000
,

where in the last line we have used that
∑n∗

i=0 2i ≤ 4
√

n.

Bounding the contribution of Ĥ2

Applying the bound directly to the sum, we have that

∑

(i,j)∈Ĥ2

γiγj

n
e(Ai, Bj) ≤ c1

∑

(i,j)∈Ĥ2

γ 2
i γ 2

j

n
√

d
μ(Ai, Bj) = c1

√
d

∑

(i,j)∈Ĥ2

γ 2
i γ 2

j

n

|Ai||Bj|
n

.

Further,

n∗∑

i=0

γ 2
i |Ai|
n

≤ 4
n∑

u=1

|xu|2 ≤ 4,

and the same bound holds for the sum over |Bj|. Hence,

∑

(i,j)∈Ĥ2

γiγj

n
e(Ai, Bj) ≤ c1

√
d

n∗∑

i,j=0

γ 2
i γ 2

j

n

|Ai||Bj|
n

= 16c1

√
d.

Bounding the contribution of Ĥ3.

By the bound on the degrees, we have that e(Ai, Bj) ≤ C1|Bj|d. Hence,

∑

(i,j)∈Ĥ3

γiγj

n
e(Ai, Bj) ≤ C1d

∑

(i,j)∈Ĥ3

γiγj

n
|Bj|.

Since γi < 4γj/
√

d, upon summing over all possible i, we get that for fixed j,

∑

i:(i,j)∈Ĥ3

γi ≤
8γj√

d
.
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Therefore,

∑

(i,j)∈Ĥ3

γiγj

n
e(Ai, Bj) ≤ C1

√
d

n∗∑

j=0

8γ 2
j

n
|Bj| ≤ 32C1

√
d.

Bounding the contribution of Ĥ4.

As we are not in Ĥ1 or Ĥ2, it must be that (i, j) ∈ Ĥ4 satisfy the 2nd discrepancy

condition, that is,

1
2e(Ai, Bj) log n

|Ai| ≤ e(Ai, Bj) log
e(Ai,Bj)

μ(Ai,Bj)
≤ c2|Ai| log n

|Ai| .

Hence, applying this bound and summing over all j so that γj ≤ 1
4

√
dγi,

∑

(i,j)∈Ĥ4

γiγj

n
e(Ai, Bj) ≤ c2

√
d

n∗∑

i=0

γ 2
i
|Ai|
n

≤ 4c2

√
d.

Bounding the contribution of Ĥ5.

For (i, j) ∈ Ĥ5 we have

e(Ai, Bj) ≤ μ(Ai, Bj)
(

n
|Ai|

)1/2 = d|Bj|
(

n
|Ai|

)−1/2 ≤ d|Bj|γ−2
i .

Hence,

∑

(i,j)∈Ĥ5

γiγj

n
e(Ai, Bj) ≤

∑

(i,j)∈Ĥ5

dγ 2
j |Bj|

nγiγj
≤ 2√

d

n∗∑

j=0

dγ 2
j |Bj|
n

≤ 8
√

d,

where we have used in the penultimate bound that the sum over i is dominated by the

series
∑

i:
√

d≤γjγi

1

γi
≤ 2γj√

d
.

Bounding the contribution of Ĥ6.

For (i, j) ∈ Ĥ6, we have that

e(Ai, Bj) log
c1γiγj√

d
≤ e(Ai, Bj) log

e(Ai,Bj)

μ(Ai,Bj)
≤ c2|Ai| log n

|Ai| ≤ 4c2|Ai| log γi.
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This brings us to the bound

∑

(i,j)∈Ĥ6

γiγj

n
e(Ai, Bj) ≤ 4c2 ·

∑

(i,j)∈Ĥ6

γi|Ai| log γi

n

γj

log(c1γiγj)− log
√

d
.

The sum in j only runs over those terms such that 4γj ≤
√

dγi and such that γjγi ≥
√

d.

For j such that γj ≤ γi

√
d/(1+ log(γi)) we bound the sum over j by

∑

j

γj

log(c1γiγj)− log
√

d
≤
∑

j

γj

log c1
≤ 2γi

√
d

(log c1)(1+ log γi)
.

For larger j, we bound the sum by

∑

j

γj

log(c1γiγj)− log
√

d
≤
∑

j

γj

log c1γ 2
i − log(1+ log γi)

≤ γi

√
d

2(log c1)(log γi)
,

having applied the inequality log(1+ x) ≤ x. Hence, we conclude that

∑

(i,j)∈Ĥ6

γiγj

n
e(Ai, Bj) ≤

10c2

√
d

log c1
·
∑

(i,j)∈Ĥ6

γ 2
i |Ai|
n

≤ 40c2

√
d

log c1
.

A Estimates of Binomial Random Variables

Lemma A.1. Let X be a binomial random variable with mean μ. Then for any t ≤ μ,

P [X ≤ t] ≤ exp
[−μ+ t(1+ log μ

t )
]

.

Proof of Lemma A.1 The proof follows from a standard estimate on the Laplace

transform combined with Markov’s inequality. For any λ ∈ R, the Laplace transform

of X ∼ Binomial(n, p) can be bounded by

EeλX = (
peλ + (1− p)

)n

= (
1+ p(eλ − 1)

)n

≤ exp
[
μ(eλ − 1)

]
.
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Provided that λ < 0, the tail bound now can be bounded by Markov’s inequality by

P [X ≤ t] = P

[
eλX ≥ eλt

]

≤
[
EeλX

]
e−λt

≤ exp
[
μ(eλ − 1)− λt

]
.

Assuming that t < μ, this bound holds with λ = log(t/μ), which upon evaluation gives

P [X ≤ t] ≤ exp
[
μ(elog(t/μ) − 1)− log(t/μ)t

]
= exp

[−μ+ t(1+ log μ
t )
]

. �

Lemma A.2. Let X be a binomial random variable with mean μ. Then for any t > 4,

P [X ≥ tμ] ≤ exp
[
− tμ log(t)

3

]
.

Proof of Lemma A.2 The proof here is identical in approach to the proof of

Lemma A.1. As there, it is possible to bound the Laplace transform of X as

EeλX ≤ exp
[
μ(eλ − 1)

]
,

for any real λ. For λ > 0, the tail bound follows from Markov’s inequality by

P [X ≥ tμ] = P

[
eλX ≥ eλtμ

]

≤
[
EeλX

]
e−λtμ

≤ exp
[
μ(eλ − 1)− λtμ

]
.

For t > 1, it is possible to take λ = log t. This gives the bound on the tail probability

P [X ≥ tμ] ≤ exp
[
μ (t− 1− t log t)

]
.

To complete the proof, it remains to show that t − 1 ≤ 2
3 t log t when t ≥ 4. The

function t
t−1 log t is monotonically increasing for t > 1, and thus it suffices to show that

4
3 log 4 ≥ 3

2 , or equivalently that log 4 ≥ 9
8 . This follows from log 4 = ∫ 4

1
1
x , dx and

bounding the integral from below by a right Riemann sum. �
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